
Strongly Connected
Components

Yian Xu

CSES: Planets and
Kingdoms

- A game has n planets,
connected by m
teleporters. Two planets
a and b belong to the
same kingdom exactly
when there is a route
from a to b and from b
to a. Your task is to
determine for each
planet its kingdom.

What it does:

A strongly connected
component in a subgraph of
a directed graph where every
node can be reached from
another.

Finding strongly connected
components can be helpful
in simplitying the structure
of the graph by presenting a
SCC as a unit/ single node.

What it does:

A strongly connected
component in a subgraph of
a directed graph where every
node can be reached from
another.

Finding strongly connected
components can be helpful
in simplitying the structure
of the graph by presenting a
SCC as a unit/ single node.

Brute force solution

- loop through all
pairs of nodes

- for each pair check
if they are reachable
from eachother

- if they are, mark
them as being in the
same SCC

The time complexity of this is O(n)
* O(n + e) = O(n^2 + en)

Efficient Algorithns

Kosaraju Tarjan

Trajan’s Algorithm

- Do a dfs
- for each node store its dist (distance from the root)
- store also back (the highest node that can be reached from it

or a node in its subtree)
- the subtrees of nodes with dist = back with form strongly

connected components
- O(V + E)

Kosaraju’s Algorithm

- Euler tour for ‘end time’ using dfs // or just top sort
- Reverse the edges in the graph
- dfs the reverse graph in the order descending time of finished

processing
- each tree found of the reversed graph forest will now be a SCC

in the origional graph
- O(V + E)

Kosaraju’s Algorithm

Example on Planets and
Kingdoms

Why does Kosaraju’s work?

Kosaraju’s Algorithm

finish(u) - the time that u is finished being processed by euler
tour

G - the graph

G’ - the reversed graph

finish(S) - max of finish of elements of S for any graph S

1. Lemma

For given SCCs C and C’ in G if there exists an edge from a vertex
in C to a vertex in C’ then finish(C) > finish(C’)

In the reverse graph G’ if there exists a vertex from a vertex in C to
a vertex in C’ then finish(C) < finish(C’)

Case i) process C before C’

case ii) process C’ before C

2. Induction on subtrees

Assume the graph has been reversed and k subtrees have been
process and you are processing the k + 1 th tree, call it T, starting
at vertex u, call the SCC U is part of C

i) if v in C then v in T

ii) if v in T then v in C

2. Induction on subtrees

i) if v in C then v in T

- v is reachable by u
- v cannot have been previously visited

2. Induction on subtrees

ii) if v in T then v in C
- v cannot be in any SCCs that were processed before u
- if v were part of any later processed SCC C‘ then there would

exist an edge from C to C’ implying that finish(C) < finish(C’)
- this contradicts the fact that the vertexes were processed in

descending finish values

Codeforces: Ralph and Mushrooms

Ralph is going to collect mushrooms in the Mushroom Forest.

There are m directed paths connecting n trees in the Mushroom Forest. On each path grow some
mushrooms. When Ralph passes a path, he collects all the mushrooms on the path. The Mushroom
Forest has a magical fertile ground where mushrooms grow at a fantastic speed. New mushrooms
regrow as soon as Ralph finishes mushroom collection on a path. More specifically, after Ralph passes
a path the i-th time, there regrow i mushrooms less than there was before this pass. That is, if there is
initially x mushrooms on a path, then Ralph will collect x mushrooms for the first time, x - 1 mushrooms
the second time, x - 1 - 2 mushrooms the third time, and so on. However, the number of mushrooms can
never be less than 0.

For example, let there be 9 mushrooms on a path initially. The number of mushrooms that can be
collected from the path is 9, 8, 6 and 3 when Ralph passes by from first to fourth time. From the fifth
time and later Ralph can't collect any mushrooms from the path (but still can pass it).

Ralph decided to start from the tree s. How many mushrooms can he collect using only described
paths?

Solution:

Ideally we want to visit each as many paths and as many times
as possible

- in a SCC we can loop around as many times as needed and
enter/exit to any other vertex that has an edge to some vertex
in the SCC

- replace each SCC with one node that has a certain ‘weight’
that it adds

Solution:

Now we are working with a DAG

- just need to find the longest path from s where the length of an
edge is its initial mushroom count

- top sort and then dfs
- some other details left as an exercise to the reader :)

